Propiedades de los triángulos
Un cuadrilátero con sus diagonales
Un triángulo puede ser definido como un polígono de tres lados, o como un polígono con tres vértices.
Después del punto y el segmento, el triángulo es el polígono más simple. Es el único que no tiene diagonal. En el espacio, tres puntos definen un triángulo (y un plano). Por el contrario, si cuatro puntos de un mismo plano forman un cuadrilátero, cuatro puntos que no estén en el mismo plano no definen un polígono, sino un tetraedro
Por otra parte, cada polígono puede ser dividido en un número finito de triángulos que se forman con unatriangulación del polígono. El número mínimo de triángulos necesarios para esta división es n − 2, donden es el número de lados del polígono. El estudio de los triángulos es fundamental para el estudio de otros polígonos, por ejemplo para la demostración del Teorema de Pick.
La suma de los ángulos de un triángulo es 180 grados.
Euclides había demostrado este resultado en sus Elementos(proposición I-32) de la siguiente manera: trazamos la paralela a la línea (AB) que pasa por C. Siendo paralelas, esta recta y la recta (AB) forman con la recta (AC) ángulos iguales, codificados en color rojo en la figura de al lado (ángulos alternos-internos). Del mismo modo, los ángulos codificados en color azul son iguales (ángulos correspondientes). Por otro lado, la suma de los tres ángulos del vértice Ces el ángulo llano. Así que la suma de las medidas del ángulo de color rojo, del ángulo verde y del azul es un ángulo de 180 ° (o π radianes). La suma de los ángulos de un triángulo es 180 °.
Esta propiedad es el resultado de la geometría euclidiana. No se verifica en general en la geometría no euclidiana.
- La suma de las longitudes de dos de sus lados es siempre mayor que la longitud del tercer lado.
- El valor de la paralela media de un triángulo (recta que une dos puntos medios de dos lados) es igual a la mitad del lado paralelo.
- Para cualquier triángulo se verifica el Teorema del seno que establece: «Los lados de un triángulo son proporcionales a los senos de los ángulos opuestos»:

El teorema de Pitágoras gráficamente.
- Para cualquier triángulo se verifica el Teorema del coseno que demuestra que «El cuadrado de un lado es igual a la suma de los cuadrados de los otros lados menos el doble del producto de estos lados por el coseno del ángulo comprendido»:



- Para cualquier triángulo rectángulo, cuyos catetos miden a y b, y cuya hipotenusa mida c, se verifica el Teorema de Pitágoras:

|